See binary relation in All languages combined, or Wiktionary
{ "forms": [ { "form": "binary relations", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "binary relation (plural binary relations)", "name": "en-noun" } ], "hyponyms": [ { "_dis1": "46 54", "topics": [ "order-theory", "mathematics", "sciences" ], "word": "dependency relation" }, { "_dis1": "46 54", "topics": [ "order-theory", "mathematics", "sciences" ], "word": "equivalence relation" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "_dis1": "46 54", "english": "the empty set", "word": "nil relation" }, { "_dis1": "46 54", "alt": "the entire set A×A", "word": "universal relation" } ], "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Set theory", "orig": "en:Set theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "61 39", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "63 37", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "61 39", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "64 36", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "61 39", "kind": "other", "name": "Terms with Czech translations", "parents": [], "source": "w+disamb" }, { "_dis": "65 35", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" }, { "_dis": "65 35", "kind": "other", "name": "Terms with French translations", "parents": [], "source": "w+disamb" }, { "_dis": "57 43", "kind": "other", "name": "Terms with Hungarian translations", "parents": [], "source": "w+disamb" }, { "_dis": "65 35", "kind": "other", "name": "Terms with Icelandic translations", "parents": [], "source": "w+disamb" }, { "_dis": "66 34", "kind": "other", "name": "Terms with Italian translations", "parents": [], "source": "w+disamb" }, { "_dis": "66 34", "kind": "other", "name": "Terms with Japanese translations", "parents": [], "source": "w+disamb" }, { "_dis": "65 35", "kind": "other", "name": "Terms with Romanian translations", "parents": [], "source": "w+disamb" }, { "_dis": "66 34", "kind": "other", "name": "Terms with Spanish translations", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "1978, George Grätzer, General Lattice Theory, Academic Press, page 1:", "text": "A partially ordered set #92;langleA,#92;varrho#92;rangle consists of a nonvoid set A and a binary relation #92;varrho on A, such that #92;varrho satisfies properties (P1)-(P3).", "type": "quote" }, { "ref": "1999, James C. Moore, Mathematical Methods for Economic Theory 1, Springer, page 24:", "text": "1.30. Corollary. If P is a binary relation which is asymmetric and negatively transitive, then P is also transitive.\nIt should be noted that a binary relation may be irreflexive and negatively transitive without being transitive; as an example, consider the standard inequality relation (≠).", "type": "quote" }, { "ref": "2005, T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer, page 1:", "text": "Definition If E is a non-empty set then by an order on E we mean a binary relation on E that is reflexive, anti-symmetric, and transitive.", "type": "quote" } ], "glosses": [ "A subset of the Cartesian product A×A (the set of ordered pairs (a, b) of elements of A)." ], "id": "en-binary_relation-en-noun-QVsM9Asj", "links": [ [ "set theory", "set theory" ], [ "subset", "subset" ], [ "Cartesian product", "Cartesian product" ], [ "ordered pair", "ordered pair" ], [ "element", "element" ] ], "qualifier": "\"on\" a set A", "raw_glosses": [ "(set theory, order theory, \"on\" a set A) A subset of the Cartesian product A×A (the set of ordered pairs (a, b) of elements of A)." ], "topics": [ "mathematics", "order-theory", "sciences", "set-theory" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Set theory", "orig": "en:Set theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "A subset of the Cartesian product A×B." ], "id": "en-binary_relation-en-noun-L9v2tqxj", "links": [ [ "set theory", "set theory" ], [ "subset", "subset" ], [ "Cartesian product", "Cartesian product" ] ], "qualifier": "\"on\" or \"between\" sets A and B", "raw_glosses": [ "(set theory, order theory, \"on\" or \"between\" sets A and B) A subset of the Cartesian product A×B." ], "topics": [ "mathematics", "order-theory", "sciences", "set-theory" ] } ], "synonyms": [ { "_dis1": "46 54", "topics": [ "order-theory", "mathematics", "sciences" ], "word": "correspondence" }, { "_dis1": "46 54", "topics": [ "order-theory", "mathematics", "sciences" ], "word": "dyadic relation" }, { "_dis1": "46 54", "topics": [ "order-theory", "mathematics", "sciences" ], "word": "2-place relation" } ], "translations": [ { "_dis1": "50 50", "code": "cs", "lang": "Czech", "sense": "order theory", "tags": [ "feminine" ], "word": "binární relace" }, { "_dis1": "50 50", "code": "fi", "lang": "Finnish", "sense": "order theory", "word": "binäärirelaatio" }, { "_dis1": "50 50", "code": "fr", "lang": "French", "sense": "order theory", "tags": [ "feminine" ], "word": "relation binaire" }, { "_dis1": "50 50", "code": "hu", "lang": "Hungarian", "sense": "order theory", "word": "kétváltozós reláció" }, { "_dis1": "50 50", "code": "is", "lang": "Icelandic", "sense": "order theory", "tags": [ "neuter", "plural" ], "word": "tvístæð vensl" }, { "_dis1": "50 50", "code": "it", "lang": "Italian", "sense": "order theory", "tags": [ "feminine" ], "word": "relazione binaria" }, { "_dis1": "50 50", "code": "ja", "lang": "Japanese", "roman": "nikō-kankei", "sense": "order theory", "word": "二項関係" }, { "_dis1": "50 50", "code": "ro", "lang": "Romanian", "sense": "order theory", "tags": [ "feminine" ], "word": "relație binară" }, { "_dis1": "50 50", "code": "es", "lang": "Spanish", "sense": "order theory", "tags": [ "feminine" ], "word": "relación binaria" } ], "wikipedia": [ "binary relation" ], "word": "binary relation" }
{ "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Czech translations", "Terms with Finnish translations", "Terms with French translations", "Terms with Hungarian translations", "Terms with Icelandic translations", "Terms with Italian translations", "Terms with Japanese translations", "Terms with Romanian translations", "Terms with Spanish translations" ], "forms": [ { "form": "binary relations", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "binary relation (plural binary relations)", "name": "en-noun" } ], "hyponyms": [ { "topics": [ "order-theory", "mathematics", "sciences" ], "word": "dependency relation" }, { "topics": [ "order-theory", "mathematics", "sciences" ], "word": "equivalence relation" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "english": "the empty set", "word": "nil relation" }, { "alt": "the entire set A×A", "word": "universal relation" } ], "senses": [ { "categories": [ "English terms with quotations", "en:Set theory" ], "examples": [ { "ref": "1978, George Grätzer, General Lattice Theory, Academic Press, page 1:", "text": "A partially ordered set #92;langleA,#92;varrho#92;rangle consists of a nonvoid set A and a binary relation #92;varrho on A, such that #92;varrho satisfies properties (P1)-(P3).", "type": "quote" }, { "ref": "1999, James C. Moore, Mathematical Methods for Economic Theory 1, Springer, page 24:", "text": "1.30. Corollary. If P is a binary relation which is asymmetric and negatively transitive, then P is also transitive.\nIt should be noted that a binary relation may be irreflexive and negatively transitive without being transitive; as an example, consider the standard inequality relation (≠).", "type": "quote" }, { "ref": "2005, T. S. Blyth, Lattices and Ordered Algebraic Structures, Springer, page 1:", "text": "Definition If E is a non-empty set then by an order on E we mean a binary relation on E that is reflexive, anti-symmetric, and transitive.", "type": "quote" } ], "glosses": [ "A subset of the Cartesian product A×A (the set of ordered pairs (a, b) of elements of A)." ], "links": [ [ "set theory", "set theory" ], [ "subset", "subset" ], [ "Cartesian product", "Cartesian product" ], [ "ordered pair", "ordered pair" ], [ "element", "element" ] ], "qualifier": "\"on\" a set A", "raw_glosses": [ "(set theory, order theory, \"on\" a set A) A subset of the Cartesian product A×A (the set of ordered pairs (a, b) of elements of A)." ], "topics": [ "mathematics", "order-theory", "sciences", "set-theory" ] }, { "categories": [ "en:Set theory" ], "glosses": [ "A subset of the Cartesian product A×B." ], "links": [ [ "set theory", "set theory" ], [ "subset", "subset" ], [ "Cartesian product", "Cartesian product" ] ], "qualifier": "\"on\" or \"between\" sets A and B", "raw_glosses": [ "(set theory, order theory, \"on\" or \"between\" sets A and B) A subset of the Cartesian product A×B." ], "topics": [ "mathematics", "order-theory", "sciences", "set-theory" ] } ], "synonyms": [ { "topics": [ "order-theory", "mathematics", "sciences" ], "word": "correspondence" }, { "topics": [ "order-theory", "mathematics", "sciences" ], "word": "dyadic relation" }, { "topics": [ "order-theory", "mathematics", "sciences" ], "word": "2-place relation" } ], "translations": [ { "code": "cs", "lang": "Czech", "sense": "order theory", "tags": [ "feminine" ], "word": "binární relace" }, { "code": "fi", "lang": "Finnish", "sense": "order theory", "word": "binäärirelaatio" }, { "code": "fr", "lang": "French", "sense": "order theory", "tags": [ "feminine" ], "word": "relation binaire" }, { "code": "hu", "lang": "Hungarian", "sense": "order theory", "word": "kétváltozós reláció" }, { "code": "is", "lang": "Icelandic", "sense": "order theory", "tags": [ "neuter", "plural" ], "word": "tvístæð vensl" }, { "code": "it", "lang": "Italian", "sense": "order theory", "tags": [ "feminine" ], "word": "relazione binaria" }, { "code": "ja", "lang": "Japanese", "roman": "nikō-kankei", "sense": "order theory", "word": "二項関係" }, { "code": "ro", "lang": "Romanian", "sense": "order theory", "tags": [ "feminine" ], "word": "relație binară" }, { "code": "es", "lang": "Spanish", "sense": "order theory", "tags": [ "feminine" ], "word": "relación binaria" } ], "wikipedia": [ "binary relation" ], "word": "binary relation" }
Download raw JSONL data for binary relation meaning in English (4.3kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-15 from the enwiktionary dump dated 2025-01-01 using wiktextract (b941637 and 4230888). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.